This site is supported by donations to The OEIS Foundation.

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A163217 Number of reduced words of length n in Coxeter group on 34 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I. 1
 1, 34, 1122, 37026, 1221297, 40284288, 1328771136, 43829305344, 1445702699760, 47686274735616, 1572924224543232, 51882656590093824, 1711341215834452224, 56448319139710451712, 1861938872397761101824, 61415759005426222645248 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The initial terms coincide with those of A170753, although the two sequences are eventually different. Computed with MAGMA using commands similar to those used to compute A154638. LINKS G. C. Greubel, Table of n, a(n) for n = 0..650 Index entries for linear recurrences with constant coefficients, signature (32, 32, 32, -528). FORMULA G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(528*t^4 - 32*t^3 - 32*t^2 - 32*t + 1). MATHEMATICA CoefficientList[Series[(t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(528*t^4 - 32*t^3 - 32*t^2 - 32*t + 1), {t, 0, 50}], t] (* or *) Join[{1}, LinearRecurrence[{32, 32, 32, -528}, {34, 1122, 37026, 1221297}, 10]] (* G. C. Greubel, Dec 11 2016 *) PROG (PARI) Vec((t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(528*t^4 - 32*t^3 - 32*t^2 - 32*t + 1) + O(t^50)) \\ G. C. Greubel, Dec 11 2016 CROSSREFS Cf. A154638, A170753. Sequence in context: A214190 A214241 A162838 * A163593 A164050 A164670 Adjacent sequences:  A163214 A163215 A163216 * A163218 A163219 A163220 KEYWORD nonn,easy AUTHOR John Cannon and N. J. A. Sloane, Dec 03 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.