login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A163212 Wilson quotients (A007619) which are primes. 5
5, 103, 329891, 10513391193507374500051862069 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(5) = A007619(137), a(6) = A007619(216), a(7) = A007619(381).

Same as A122696 without its initial term 2. - Jonathan Sondow, May 19 2013

REFERENCES

Peter Luschny, "Divide, swing and conquer the factorial and the lcm{1,2,…,n}", preprint, April 2008.

LINKS

Table of n, a(n) for n=1..4.

Peter Luschny, Swinging Primes.

J. Sondow, Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-non-Wilson Primes 2, 3, 14771, in Proceedings of CANT 2011, arXiv:1110.3113

J. Sondow, Lerch Quotients, Lerch Primes, Fermat-Wilson Quotients, and the Wieferich-non-Wilson Primes 2, 3, 14771, Combinatorial and Additive Number Theory, CANT 2011 and 2012, Springer Proc. in Math. & Stat., vol. 101 (2014), pp. 243-255.

FORMULA

a(n) = A122696(n+1) = A007619(A225906(n)) = ((A050299(n+1)-1)!+1)/A050299(n+1). - Jonathan Sondow, May 19 2013

EXAMPLE

The quotient (720+1)/7 = 103 is a Wilson quotient and a prime, so 103 is a member.

MAPLE

# WQ defined in A163210.

A163212 := n -> select(isprime, WQ(factorial, p->1, n)):

MATHEMATICA

Select[Table[p = Prime[n]; ((p-1)!+1)/p, {n, 1, 15}], PrimeQ] (* Jean-François Alcover, Jun 28 2013 *)

PROG

(PARI) forprime(p=2, 1e4, a=((p-1)!+1)/p; if(ispseudoprime(a), print1(a, ", "))) \\ Felix Fröhlich, Aug 03 2014

CROSSREFS

Cf. A050299, A163211, A007619, A122696, A163210, A163213, A163209, A225906.

Sequence in context: A159523 A172116 A007619 * A163154 A165387 A156848

Adjacent sequences:  A163209 A163210 A163211 * A163213 A163214 A163215

KEYWORD

nonn

AUTHOR

Peter Luschny, Jul 24 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 27 08:41 EDT 2017. Contains 284146 sequences.