login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A163203 G.f.: exp( Sum_{n>=1} [Sum_{d|n} (-1)^(n-d)*d^n] * x^n/n ). 1

%I

%S 1,1,2,11,79,713,8486,127372,2248390,45527161,1048442107,27060812167,

%T 771886991408,24110090108332,818871809076474,30044771201925569,

%U 1184069354974499199,49884064948928968400,2237283630465903060711

%N G.f.: exp( Sum_{n>=1} [Sum_{d|n} (-1)^(n-d)*d^n] * x^n/n ).

%C A variant of A023881, which is defined by g.f.:

%C exp( Sum_{n>=1} [Sum_{d|n} d^n] * x^n/n )

%C where A023881 is the number of partitions in expanding space.

%C Compare also to the g.f. of A006950 given by:

%C exp( Sum_{n>=1} [Sum_{d|n} (-1)^(n-d)*d] * x^n/n ),

%C where A006950(n) is the number of partitions of n in which each even part occurs with even multiplicity.

%e G.f.: 1 + x + 2*x^2 + 11*x^3 + 79*x^4 + 713*x^5 + 8486*x^6 +...

%o (PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, sumdiv(m, d, (-1)^(m-d)*d^m)*x^m/m)+x*O(x^n)), n)}

%Y Cf. A023881, A006950, A002129.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Jul 22 2009

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 21 07:50 EST 2014. Contains 252297 sequences.