OFFSET
1,3
COMMENTS
T(n,k) is the number of length n sequences on an alphabet of {0,1,2,...,n-1} that have a sum of k. Equivalently T(n,k) is the number of functions f:{1,2,...,n}->{0,1,2,...,n-1} such that Sum(f(i)=k, i=1...n).
Row n is also row n of the array of q-nomial coefficients. - Matthew Vandermast, Oct 31 2010
LINKS
Alois P. Heinz, Rows n = 1..32, flattened
FORMULA
O.g.f. for row n is ((1-x^n)/(1-x))^n. For k<=(n-1), T(n,k) = C(n+k-1,k).
EXAMPLE
T(3,4) = 6 because there are 6 ternary sequences of length three that sum to 4: [0, 2, 2], [1, 1, 2], [1, 2, 1], [2, 0, 2], [2, 1, 1], [2, 2, 0].
MAPLE
b:= proc(n, k, l) option remember; `if`(k=0, 1,
`if`(l=0, 0, add(b(n, k-j, l-1), j=0..min(n-1, k))))
end:
T:= (n, k)-> b(n, k, n):
seq(seq(T(n, k), k=0..n*(n-1)), n=1..8); # Alois P. Heinz, Feb 21 2013
MATHEMATICA
(*warning very inefficient*) Table[Distribution[Map[Total, Strings[Range[n], n]]], {n, 1, 6}]//Grid
nn=100; Table[CoefficientList[Series[Sum[x^i, {i, 0, n-1}]^n, {x, 0, nn}], x], {n, 1, 10}]//Grid (* Geoffrey Critzer, Feb 21 2013*)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Geoffrey Critzer, Jul 22 2009
STATUS
approved