login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A163154 Primes one less than a Golden rectangle number. 3
5, 103, 3478759199, 116139356908771351, 37396512239913013823, 285687842248637730909432643746211633, 1391541769353191693086710038712557510379751, 1550980526109101915069808788349000570735950731617761605783 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Primes of the form A001654(k)-1, generated at k = 3, 6, 24, 42, 48, 86, 102, 138, 182,....

Yet another way of stating the definition: primes of the form F(k)*F(k+1)-1, where F(k) is the k-th Fibonacci number (A000045). - Colin Barker, Apr 07 2016

LINKS

Table of n, a(n) for n=1..8.

EXAMPLE

103 is in the sequence because 103 = 8*13-1 = F(6)*F(7)-1.

MATHEMATICA

q=0; lst={}; Do[f=Fibonacci[n]; If[PrimeQ[f*q-1], AppendTo[lst, f*q-1]]; q=f, {n, 6!}]; lst

f[n_] := Fibonacci@ n Fibonacci[n + 1] - 1; f /@ Select[Range@ 180, PrimeQ[f@ #] &] (* Michael De Vlieger, Apr 07 2016 *)

PROG

(PARI) L=List(); for(k=1, 200, if(isprime(p=fibonacci(k)*fibonacci(k+1)-1), listput(L, p))); Vec(L) /* Colin Barker, Apr 07 2016 */

CROSSREFS

Cf. A001654, A000045, A119996, A163157, A271428.

Sequence in context: A172116 A007619 A163212 * A165387 A156848 A057016

Adjacent sequences:  A163151 A163152 A163153 * A163155 A163156 A163157

KEYWORD

nonn

AUTHOR

Vladimir Joseph Stephan Orlovsky, Jul 21 2009

EXTENSIONS

Definition reworded by R. J. Mathar, Sep 11 2009

a(8) from Colin Barker, Apr 07 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 8 15:08 EST 2016. Contains 278945 sequences.