OFFSET
0,2
COMMENTS
A163129 is defined by the g.f.:
A(q) = exp( Sum_{n>=1} sigma(n) * 3*A038500(n) * q^n/n ),
where A038500(n) = highest power of 3 dividing n.
Trisections are related by: A(q) = T_0(q) + T_1(q) + T_2(q) where
3*T_0(q)/T_1(q) = 3*T_1(q)/T_2(q) = T9B(q), the g.f. of A058091,
which is the McKay-Thompson series of class 9B for Monster.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
EXAMPLE
G.f.: T_0(q) = 1 + 30*q^3 + 441*q^6 + 4431*q^9 + 35094*q^12 + ...
MATHEMATICA
eta[q_] := q^(1/24)*QPochhammer[q]; nmax = 150; a[n_]:=SeriesCoefficient[ Series[Exp[Sum[DivisorSigma[1, k]*3^(IntegerExponent[k, 3] + 1)*q^k/k, {k, 1, 3*nmax + 1}]], {q, 0, nmax}], 3*n]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Jul 03 2018 *)
PROG
(PARI) {a(n)=local(L=sum(m=1, 3*n, 3*sigma(m)*3^valuation(m, 3)*x^m/m)+x*O(x^(3*n))); polcoeff(exp(L), 3*n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 21 2009
EXTENSIONS
Comment corrected by Paul D. Hanna, Jul 24 2009
STATUS
approved