

A163078


Numbers n such that n$  1 is prime. Here '$' denotes the swinging factorial function (A056040).


3



3, 4, 5, 6, 7, 10, 13, 15, 18, 30, 35, 39, 41, 47, 49, 58, 83, 86, 102, 111, 137, 151, 195, 205, 226, 229, 317, 319, 321, 368, 389, 426, 444, 477, 534, 558, 567, 738, 804, 882, 1063, 1173, 1199, 1206, 1315, 1624, 1678, 1804, 2371, 2507, 2541, 2844, 3084, 3291
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


REFERENCES

Peter Luschny, "Divide, swing and conquer the factorial and the lcm{1,2,...,n}", preprint, April 2008.


LINKS

Table of n, a(n) for n=1..54.
Peter Luschny, Swinging Primes.


EXAMPLE

4$  1 = 6  1 = 5 is prime, so 4 is in the sequence.


MAPLE

a := proc(n) select(x > isprime(A056040(x)1), [$0..n]) end:


MATHEMATICA

fQ[n_] := PrimeQ[ 1 + 2^(n  Mod[n, 2])*Product[k^((1)^(k + 1)), {k, n}]]; Select[ Range@ 3647, fQ] (* Robert G. Wilson v, Aug 09 2010 *)


CROSSREFS

Cf. A163077, A163079, A163080, A002982.
Sequence in context: A271376 A087190 A085038 * A050034 A039056 A047562
Adjacent sequences: A163075 A163076 A163077 * A163079 A163080 A163081


KEYWORD

nonn


AUTHOR

Peter Luschny, Jul 21 2009


EXTENSIONS

a(42)  a(54) from Robert G. Wilson v, Aug 09 2010


STATUS

approved



