|
|
A163068
|
|
a(n) = 16*a(n-1) - 59*a(n-2) for n > 1; a(0) = 2, a(1) = 21.
|
|
2
|
|
|
2, 21, 218, 2249, 23122, 237261, 2431978, 24913249, 255125282, 2612122821, 26741573498, 273749929529, 2802246036082, 28684690735101, 293622535632778, 3005563816753489, 30765291465721922, 314916398263094901
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Binomial transform of A163067.
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..985
Index entries for linear recurrences with constant coefficients, signature (16,-59).
|
|
FORMULA
|
a(n) = ((2+sqrt(5))*(8+sqrt(5))^n + (2-sqrt(5))*(8-sqrt(5))^n)/2.
G.f.: (2-11*x)/(1-16*x+59*x^2).
|
|
MATHEMATICA
|
LinearRecurrence[{16, -59}, {2, 21}, 30] (* G. C. Greubel, Jan 08 2018 *)
|
|
PROG
|
(MAGMA) [ n le 2 select 19*n-17 else 16*Self(n-1)-59*Self(n-2): n in [1..18] ];
(PARI) x='x+O('x^30); Vec((2-11*x)/(1-16*x+59*x^2)) \\ G. C. Greubel, Jan 08 2018
|
|
CROSSREFS
|
Cf. A163067.
Sequence in context: A037743 A037638 A131698 * A109684 A292134 A137287
Adjacent sequences: A163065 A163066 A163067 * A163069 A163070 A163071
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Klaus Brockhaus, Jul 20 2009
|
|
EXTENSIONS
|
Definition corrected by Vincenzo Librandi, Dec 18 2010
|
|
STATUS
|
approved
|
|
|
|