login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A163064 a(n) = ((3+sqrt(5))*(4+sqrt(5))^n + (3-sqrt(5))*(4-sqrt(5))^n)/2. 3
3, 17, 103, 637, 3963, 24697, 153983, 960197, 5987763, 37339937, 232854103, 1452093517, 9055353003, 56469795337, 352149479663, 2196028088597, 13694580432483, 85400334485297, 532562291125063, 3321094649662237 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
Binomial transform of A098648 without initial 1. Fourth binomial transform of A163114. Inverse binomial transform of A163065.
LINKS
FORMULA
a(n) = 8*a(n-1) - 11*a(n-2) for n > 1; a(0) = 3, a(1) = 17.
G.f.: (3-7*x)/(1-8*x+11*x^2).
MATHEMATICA
CoefficientList[Series[(3-7*x)/(1-8*x+11*x^2), {x, 0, 50}], x] (* or *) LinearRecurrence[{8, -11}, {3, 17}, 30] (* G. C. Greubel, Dec 22 2017 *)
PROG
(Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-5); S:=[ ((3+r)*(4+r)^n+(3-r)*(4-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 21 2009
(Magma) I:=[3, 17]; [n le 2 select I[n] else 8*Self(n-1) - 11*Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 22 2017
(PARI) x='x+O('x^30); Vec((3-7*x)/(1-8*x+11*x^2)) \\ G. C. Greubel, Dec 22 2017
CROSSREFS
Sequence in context: A370286 A054365 A116886 * A020069 A020024 A264963
KEYWORD
nonn
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Jul 20 2009
EXTENSIONS
Edited and extended beyond a(5) by Klaus Brockhaus, Jul 21 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 16:45 EDT 2024. Contains 371989 sequences. (Running on oeis4.)