login
A162989
Lesser of twin primes p such that none of p-1, p+1 and p+3 are cubefree.
2
69497, 416501, 474497, 632501, 960497, 1068497, 1226501, 1402871, 1464101, 1635497, 1716497, 1919429, 1986497, 2114249, 2144501, 2283497, 2645189, 3120497, 3174497, 3232751, 3305501, 3332501, 3525497, 3637169, 3998537
OFFSET
1,1
LINKS
EXAMPLE
p=69497 and p+2=69499 are twin primes, also:
p-1=69496=2^3*7*17*73
p+1=69498=2*3^5*11*13
p+3=69500=2^2*5^3*139.
MAPLE
cf:= proc(n) local F;
F:= ifactors(n)[2];
max(map(t->t[2], F))>=3
end proc:
select(t -> isprime(t) and isprime(t+2) and cf(t-1) and cf(t+1) and cf(t+3), [seq(i, i=5..10^7, 6)]); # Robert Israel, Nov 24 2020
MATHEMATICA
f[m_]:=Max[Last/@FactorInteger[m]]>=3;
S={}; Do[If[PrimeQ[p=6x-1]&&PrimeQ[p+2]&&
f[p-1]==f[p+1]==f[p+3]==True, AppendTo[S, p]], {x, 1, 10^6}]; S
CROSSREFS
Cf. A046099.
See A162874 for another version.
Sequence in context: A205758 A205588 A162874 * A052195 A089218 A224324
KEYWORD
nonn
AUTHOR
Zak Seidov, Jul 19 2009
EXTENSIONS
Definition clarified by Robert Israel, Nov 24 2020
STATUS
approved