

A162930


Primes that can be written as a sum of a positive square and a positive cube in more than one way.


1



17, 89, 233, 449, 577, 593, 1289, 1367, 1601, 1753, 2089, 2521, 3391, 4481, 4721, 5953, 6121, 6427, 7057, 7577, 8081, 9649, 10313, 10657, 10729, 11969, 12329, 13121, 13457, 15137, 15193, 15641, 15661, 16033, 16649, 18523, 21673, 21961, 23201
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

A subset of these, 2089, 4481, 7057, 15193, 15641, etc., allows this representation in more than two ways.


LINKS

Table of n, a(n) for n=1..39.


FORMULA

A000040 INTERSECT A054402.


EXAMPLE

The prime 17 can be written 1^3 + 4^2 as well as 2^3 + 3^2.


MAPLE

isA162930 := proc(n) if isprime(n) then wa := 0 ; for y from 1 to n/2 do if issqr(ny^3) then if n y^3 > 0 then wa := wa+1 ; fi; fi; od: RETURN( wa>1) ; else false; fi; end:
for i from 1 to 2700 do if isA162930 ( ithprime(i)) then printf("%d, ", ithprime(i)) ; fi; od: # R. J. Mathar, Jul 21 2009


MATHEMATICA

lst={}; Do[Do[AppendTo[lst, n^2+m^3], {n, 2*5!}], {m, 2*5!}]; lst=Sort[lst]; lst2={}; Do[If[lst[[n]]==lst[[n+1]]&&PrimeQ[lst[[n]]], AppendTo[lst2, lst[[n]]]], {n, Length[lst]1}]; lst2;


CROSSREFS

Cf. A054402, A123364.
Sequence in context: A282378 A248400 A139947 * A138338 A267820 A200670
Adjacent sequences: A162927 A162928 A162929 * A162931 A162932 A162933


KEYWORD

nonn


AUTHOR

Vladimir Joseph Stephan Orlovsky, Jul 17 2009


EXTENSIONS

Slightly edited by R. J. Mathar, Jul 21 2009


STATUS

approved



