login
Number of reduced words of length n in Coxeter group on 49 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.
0

%I #5 Nov 23 2016 15:35:11

%S 1,49,2352,111720,5306112,251985048,11966664360,568291227840,

%T 26987881799256,1281641734875432,60864559478706816,

%U 2890429126368804888,137265111357893562792,6518655179668349992512,309567849623689435185624

%N Number of reduced words of length n in Coxeter group on 49 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.

%C The initial terms coincide with those of A170768, although the two sequences are eventually different.

%C Computed with MAGMA using commands similar to those used to compute A154638.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (47, 47, -1128).

%F G.f.: (t^3 + 2*t^2 + 2*t + 1)/(1128*t^3 - 47*t^2 - 47*t + 1)

%K nonn

%O 0,2

%A _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009