login
A162891
Expansion of 1 / Product_{k>=1} (1-x^k-x^(2*k)).
10
1, 1, 3, 5, 11, 18, 36, 59, 109, 181, 318, 525, 902, 1481, 2492, 4087, 6788, 11090, 18274, 29776, 48772, 79332, 129411, 210172, 341958, 554728, 900872, 1460298, 2368555, 3837147, 6218652, 10070389, 16311432, 26407350, 42757335, 69208746, 112032256, 181316714
OFFSET
0,3
LINKS
FORMULA
a(n) ~ p / (sqrt(5) * r^(n+1)), where r = (sqrt(5)-1)/2 and p = Product_{n>1} 1/(1 - r^n - r^(2*n)) = 4.64451592505133910330213147... . - Vaclav Kotesovec, Nov 16 2016
MAPLE
F:= n-> combinat[fibonacci](n+1):
b:= proc(n, i) option remember; `if`(n=0 or i=1, F(n),
add((t-> b(t, min(t, i-1)))(n-i*j)*F(j), j=0..n/i))
end:
a:= n-> b(n$2):
seq(a(n), n=0..39); # Alois P. Heinz, Aug 24 2019
MATHEMATICA
nmax = 50; CoefficientList[Series[1/Product[1-x^k-x^(2*k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 16 2016 *)
PROG
(PARI) al(n)=Vec(1/prod(k=1, n, 1-x^k-x^(2*k)+x*O(x^n)))
(Magma) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!(1/(&*[(1-x^k-x^(2*k)): k in [1..100]]))); // G. C. Greubel, Oct 24 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved