login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A162891 Expansion of 1 / Product_{k>=1} (1-x^k-x^(2*k)). 10
1, 1, 3, 5, 11, 18, 36, 59, 109, 181, 318, 525, 902, 1481, 2492, 4087, 6788, 11090, 18274, 29776, 48772, 79332, 129411, 210172, 341958, 554728, 900872, 1460298, 2368555, 3837147, 6218652, 10070389, 16311432, 26407350, 42757335, 69208746, 112032256, 181316714 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..1000

FORMULA

a(n) ~ p / (sqrt(5) * r^(n+1)), where r = (sqrt(5)-1)/2 and p = Product_{n>1} 1/(1 - r^n - r^(2*n)) = 4.64451592505133910330213147... . - Vaclav Kotesovec, Nov 16 2016

MAPLE

F:= n-> combinat[fibonacci](n+1):

b:= proc(n, i) option remember; `if`(n=0 or i=1, F(n),

      add((t-> b(t, min(t, i-1)))(n-i*j)*F(j), j=0..n/i))

    end:

a:= n-> b(n$2):

seq(a(n), n=0..39);  # Alois P. Heinz, Aug 24 2019

MATHEMATICA

nmax = 50; CoefficientList[Series[1/Product[1-x^k-x^(2*k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 16 2016 *)

PROG

(PARI) al(n)=Vec(1/prod(k=1, n, 1-x^k-x^(2*k)+x*O(x^n)))

(MAGMA) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!(1/(&*[(1-x^k-x^(2*k)): k in [1..100]]))); // G. C. Greubel, Oct 24 2018

CROSSREFS

Cf. A000045, A000041, A001156, A003105, A263401, A276527.

Sequence in context: A281357 A320789 A269628 * A320351 A319641 A306895

Adjacent sequences:  A162888 A162889 A162890 * A162892 A162893 A162894

KEYWORD

nonn,easy

AUTHOR

Franklin T. Adams-Watters, Jul 16 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 8 08:08 EDT 2020. Contains 335520 sequences. (Running on oeis4.)