login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A162885 Number of reduced words of length n in Coxeter group on 45 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I. 1
1, 45, 1980, 86130, 3746160, 162915390, 7084967670, 308115104220, 13399485132330, 582724430755830, 25341851494598760, 1102080851855063190, 47927918932540448670, 2084316599215116583020, 90643945794494362584930 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The initial terms coincide with those of A170764, although the two sequences are eventually different.

Computed with MAGMA using commands similar to those used to compute A154638.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..609

Index entries for linear recurrences with constant coefficients, signature (43, 43, -946).

FORMULA

G.f.: (t^3 + 2*t^2 + 2*t + 1)/(946*t^3 - 43*t^2 - 43*t + 1).

a(n) = 43*a(n-1) + 43*a(n-2) - 946*a(n-3), n > 0. - Muniru A Asiru, Oct 24 2018

G.f.: (1+x)*(1-x^3)/(1 - 44*x + 990*x^3 - 946*x^4). - G. C. Greubel, Apr 28 2019

MAPLE

seq(coeff(series((x^3+2*x^2+2*x+1)/(946*x^3-43*x^2-43*x+1), x, n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 24 2018

MATHEMATICA

CoefficientList[Series[(t^3+2*t^2+2*t+1)/(946*t^3-43*t^2-43*t+1), {t, 0, 20}], t] (* G. C. Greubel, Oct 24 2018 *)

coxG[{3, 946, -43}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 28 2019 *)

PROG

(PARI) my(t='t+O('t^20)); Vec((t^3+2*t^2+2*t+1)/(946*t^3-43*t^2-43*t+1)) \\ G. C. Greubel, Oct 24 2018

(MAGMA) R<t>:=PowerSeriesRing(Integers(), 20); Coefficients(R!(( t^3+ 2*t^2+2*t+1)/(946*t^3-43*t^2-43*t+1))); // G. C. Greubel, Oct 24 2018

(GAP) a:=[45, 1980, 86130];; for n in [4..20] do a[n]:=43*a[n-1]+43*a[n-2] -946*a[n-3]; od; Concatenation([1], a); # Muniru A Asiru, Oct 24 2018

(Sage) ((1+x)*(1-x^3)/(1-44*x+990*x^3-946*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019

CROSSREFS

Sequence in context: A143170 A203828 A318221 * A163231 A163749 A164330

Adjacent sequences:  A162882 A162883 A162884 * A162886 A162887 A162888

KEYWORD

nonn

AUTHOR

John Cannon and N. J. A. Sloane, Dec 03 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 15:07 EDT 2019. Contains 324185 sequences. (Running on oeis4.)