The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A162853 Take the binary representation of n. Reduce by one digit every run (completely of either 0's or 1's) of an even number of digits. Increase by one digit every run of an odd number of digits in the binary representation of n (where this added digit has the same value that makes up the rest of the run's digits). a(n) = the decimal equivalent of the result. 4
 0, 3, 12, 1, 6, 51, 4, 15, 48, 27, 204, 25, 2, 19, 60, 7, 24, 195, 108, 13, 102, 819, 100, 207, 16, 11, 76, 9, 30, 243, 28, 63, 192, 99, 780, 97, 54, 435, 52, 111, 816, 411, 3276, 409, 50, 403, 828, 103, 8, 67, 44, 5, 38, 307, 36, 79, 240, 123, 972, 121, 14, 115, 252, 31, 96 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS This is a self-inverse permutation of the nonnegative integers. Clarification: The consecutive "runs" (mentioned in the definition) alternate between those completely of 1's and those completely of 0's. In the binary representation of n, replace each run of length r by a run of length A014681(r). - Rémy Sigrist, Oct 09 2018 LINKS Rémy Sigrist, Table of n, a(n) for n = 0..8192 FORMULA a(n) = A266150(A266151(n)) = A266151(A266150(n)) for any n > 0. - Rémy Sigrist, Oct 09 2018 EXAMPLE 152 in binary is 10011000. There is a run of one 1, followed by a run of two 0's, followed by a run of two 1's, followed by a run of three 0's. We reduce the two runs of two digits each to one digit; and we add a digit (a 1) to the first run of one 1, and a digit (a 0) to the last run of three 0's, to get 11010000. So a(152) is the decimal equivalent of this, which is 208. MAPLE rerun := proc(L) if nops(L) mod 2 = 0 then subsop(1=NULL, L) ; else [op(L), op(1, L)] ; fi; end: Lton := proc(L) local i; add( op(i, L)*2^(i-1), i=1..nops(L)) ; end: A162853 := proc(n) local strt, en, L, dgs, i; strt := 1; en := -1; L := [] ; dgs := convert(n, base, 2) ; for i from 2 to nops(dgs) do if op(i, dgs) <> op(i-1, dgs) then en := i-1 ; L := [op(L), op(rerun([op(strt..en, dgs)])) ] ; strt := i; fi; od: en := nops(dgs) ; L := [op(L), op(rerun([op(strt..en, dgs)])) ] ; Lton(L) ; end: seq(A162853(n), n=1..100) ; # R. J. Mathar, Aug 01 2009 MATHEMATICA Table[FromDigits[Flatten[If[OddQ[Length[#]], Join[{First[#]}, #], Drop[#, 1]]& /@Split[ IntegerDigits[ n, 2]]], 2], {n, 70}] (* Harvey P. Dale, Jun 20 2011 *) PROG (PARI) a(n) = if (n==0, 0, my (b=n%2, r=valuation(n+b, 2), rr=if (r%2, r+1, r-1)); (a(n\2^r)+b)*2^rr-b) \\ Rémy Sigrist, Oct 09 2018 CROSSREFS Cf. A014681, A266150, A266151. Sequence in context: A088799 A181405 A072117 * A162854 A110121 A321710 Adjacent sequences:  A162850 A162851 A162852 * A162854 A162855 A162856 KEYWORD base,nonn AUTHOR Leroy Quet, Jul 14 2009 EXTENSIONS Extended beyond a(13) by R. J. Mathar, Aug 01 2009 a(0) added by Rémy Sigrist, Oct 09 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 22:58 EDT 2020. Contains 334634 sequences. (Running on oeis4.)