login
A162847
Number of reduced words of length n in Coxeter group on 35 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.
0
1, 35, 1190, 39865, 1335180, 44708895, 1497090210, 50130334485, 1678623324840, 56209003149915, 1882168556020830, 63024751767399345, 2110395119905763460, 70666959205286686935, 2366295806989839830490, 79235839622172041773965
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170754, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
FORMULA
G.f.: (t^3 + 2*t^2 + 2*t + 1)/(561*t^3 - 33*t^2 - 33*t + 1).
a(n) = 33*a(n-1) + 33*a(n-2) - 561*a(n-3). - Wesley Ivan Hurt, Apr 20 2021
MATHEMATICA
coxG[{3, 561, -33}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Oct 05 2016 *)
CROSSREFS
Sequence in context: A306685 A046176 A352183 * A029546 A305539 A163218
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved