login
A162753
a(0)=a(1)=2; a(n) is the smallest prime such that a(n-1)^a(n) > a(n-2)^a(n-1).
2
2, 2, 3, 2, 5, 3, 5, 5, 7, 7, 11, 11, 13, 13, 17, 17, 19, 19, 23, 23, 29, 29, 31, 31, 37, 37, 41, 41, 43, 43, 47, 47, 53, 53, 59, 59, 61, 61, 67, 67, 71, 71, 73, 73, 79, 79, 83, 83, 89, 89, 97, 97, 101, 101, 103, 103, 107, 107, 109, 109, 113, 113, 127, 127, 131, 131, 137, 137
OFFSET
0,1
COMMENTS
For n >= 1, A162752(n) = a(n-1)^a(n).
LINKS
FORMULA
For n >= 6, a(n) = prime(floor(n/2)). - David A. Corneth, Sep 05 2019
MAPLE
A162753 := proc(n) option remember ; if n<=1 then 2; else for i from 1 do if procname(n-1)^ithprime(i) > procname(n-2)^procname(n-1) then RETURN( ithprime(i)) ; fi; od: fi; end: seq(A162753(n), n=0..100) ; # R. J. Mathar, Jul 16 2009
PROG
(PARI) a(n) = if(n<=5, return([2, 2, 3, 2, 5, 3][n+1])); prime(n >> 1) \\ David A. Corneth, Sep 05 2019
CROSSREFS
Cf. A162752.
Sequence in context: A331532 A078773 A151663 * A307994 A238480 A111089
KEYWORD
nonn
AUTHOR
Leroy Quet, Jul 12 2009
EXTENSIONS
Extended beyond a(8) by R. J. Mathar, Jul 16 2009
STATUS
approved