The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A162745 A Fibonacci-Pascal triangle. 1
 1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 10, 20, 10, 1, 1, 15, 50, 50, 15, 1, 1, 21, 105, 173, 105, 21, 1, 1, 28, 196, 476, 476, 196, 28, 1, 1, 36, 336, 1120, 1643, 1120, 336, 36, 1, 1, 45, 540, 2352, 4707, 4707, 2352, 540, 45, 1, 1, 55, 825, 4530, 11775, 16040, 11775, 4530, 825, 55, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Row sums are A162746. LINKS Paul Barry, On a Generalization of the Narayana Triangle, J. Int. Seq. 14 (2011) # 11.4.5. FORMULA T(n,k) = Sum_{j=0..n} C(n,j)*C(n-j,2(k-j))*Fibonacci(k-j+1). EXAMPLE Triangle begins 1; 1, 1; 1, 3, 1; 1, 6, 6, 1; 1, 10, 20, 10, 1; 1, 15, 50, 50, 15, 1; 1, 21, 105, 173, 105, 21, 1; 1, 28, 196, 476, 476, 196, 28, 1; 1, 36, 336, 1120, 1643, 1120, 336, 36, 1; 1, 45, 540, 2352, 4707, 4707, 2352, 540, 45, 1; PROG (PARI) T(n, k)=sum(j=0, n, binomial(n, j)*binomial(n-j, 2*(k-j))*fibonacci(k-j+1)); row(n) = vector(n+1, k, T(n, k-1)); \\ Michel Marcus, Nov 11 2022 CROSSREFS Cf. A000045. Sequence in context: A299146 A114176 A056241 * A001263 A162747 A107105 Adjacent sequences: A162742 A162743 A162744 * A162746 A162747 A162748 KEYWORD easy,nonn,tabl AUTHOR Paul Barry, Jul 12 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 15:27 EST 2022. Contains 358588 sequences. (Running on oeis4.)