login
G.f. is the polynomial (Product_{k=1..32} (1 - x^(3*k)))/(1-x)^32.
1

%I #12 Sep 08 2022 08:45:46

%S 1,32,528,5983,52328,376464,2318799,12567864,61146228,271108112,

%T 1108426792,4218660636,15062914600,50781806768,162529249836,

%U 496126643401,1450195983290,4073269588704,11027181052792,28850795300030

%N G.f. is the polynomial (Product_{k=1..32} (1 - x^(3*k)))/(1-x)^32.

%C This is a row of the triangle in A162499. Only finitely many terms are nonzero.

%H G. C. Greubel, <a href="/A162739/b162739.txt">Table of n, a(n) for n = 0..1552</a>

%p m:=32: seq(coeff(series(mul((1-x^(3*i)),i=1..m)/(1-x)^m, x,n+1),x,n),n=0..21); # _Muniru A Asiru_, Jul 07 2018

%t CoefficientList[Series[Times@@(1-x^(3*Range[32]))/(1-x)^32, {x, 0, 50}], x] (* _G. C. Greubel_, Jul 07 2018 *)

%o (PARI) x='x+O('x^50); A = prod(k=1, 32, (1-x^(3*k)))/(1-x)^32; Vec(A) \\ _G. C. Greubel_, Jul 07 2018

%o (Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); F:=(&*[(1-x^(3*k)): k in [1..32]])/(1-x)^32; Coefficients(R!(F)); // _G. C. Greubel_, Jul 07 2018

%K nonn

%O 0,2

%A _N. J. A. Sloane_, Dec 02 2009