login
A162718
G.f. is the polynomial (Product_{k=1..26} (1 - x^(3*k)))/(1-x)^26.
1
1, 26, 351, 3275, 23725, 142155, 733004, 3342079, 13741299, 51711699, 180189789, 586778634, 1799295459, 5228005044, 14469814944, 38320410805, 97478917040, 238976617815, 566281223430, 1300339106805, 2900124541080, 6294942923296
OFFSET
0,2
COMMENTS
This is a row of the triangle in A162499. Only finitely many terms are nonzero.
LINKS
MAPLE
m:=26: seq(coeff(series(mul((1-x^(3*k)), k=1..m)/(1-x)^m, x, n+1), x, n), n=0..21); # Muniru A Asiru, Jul 07 2018
MATHEMATICA
CoefficientList[Series[Times@@(1-x^(3*Range[26]))/(1-x)^26, {x, 0, 50}], x] (* G. C. Greubel, Jul 06 2018 *)
PROG
(PARI) x='x+O('x^50); A = prod(k=1, 26, (1-x^(3*k)))/(1-x)^26; Vec(A) \\ G. C. Greubel, Jul 06 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); F:=(&*[(1-x^(3*k)): k in [1..26]])/(1-x)^26; Coefficients(R!(F)); // G. C. Greubel, Jul 06 2018
CROSSREFS
Sequence in context: A161933 A162368 A225979 * A010978 A022590 A364010
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 02 2009
STATUS
approved