login
A162702
G.f. is the polynomial (Product_{k=1..25} (1 - x^(3*k)))/(1-x)^25.
1
1, 25, 325, 2924, 20450, 118430, 590849, 2609075, 10399220, 37970400, 128478090, 406588845, 1212516825, 3428709585, 9241809900, 23850595861, 59158506235, 141497700775, 327304605615, 734057883375, 1599785434275, 3394818382216
OFFSET
0,2
COMMENTS
This is a row of the triangle in A162499. Only finitely many terms are nonzero.
The polynomial has degree 950. The polynomial is palindromic and all terms are nonzero. Hence, this sequence has 951 nonzero terms. - T. D. Noe, Apr 06 2011
LINKS
MAPLE
m:=25: seq(coeff(series(mul((1-x^(3*k)), k=1..m)/(1-x)^m, x, n+1), x, n), n=0..21); # Muniru A Asiru, Jul 07 2018
MATHEMATICA
CoefficientList[Series[Times@@Table[1-x^p, {p, 3, 75, 3}]/ (1-x)^25, {x, 0, 25}], x] (* Harvey P. Dale, Apr 06 2011 *)
PROG
(PARI) x='x+O('x^50); A = prod(k=1, 25, (1-x^(3*k)))/(1-x)^25; Vec(A) \\ G. C. Greubel, Jul 06 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); F:=(&*[(1-x^(3*k)): k in [1..25]])/(1-x)^25; Coefficients(R!(F)); // G. C. Greubel, Jul 06 2018
CROSSREFS
Sequence in context: A188355 A243089 A079875 * A010977 A022589 A344656
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 02 2009
STATUS
approved