login
A162679
G.f. is the polynomial (Product_{k=1..22} (1 - x^(3*k)))/(1-x)^22.
1
1, 22, 253, 2023, 12628, 65527, 293985, 1171368, 4226112, 14009116, 43155475, 124666555, 340214160, 882447555, 2186642775, 5198778091, 11903438767, 26332159753, 56436426134, 117478662620, 238027900220, 470331123901
OFFSET
0,2
COMMENTS
This is a row of the triangle in A162499. Only finitely many terms are nonzero.
LINKS
MAPLE
m:=22: seq(coeff(series(mul((1-x^(3*k)), k=1..m)/(1-x)^m, x, n+1), x, n), n=0..21); # Muniru A Asiru, Jul 07 2018
MATHEMATICA
With[{num=Times@@(1-x^Range[3, 66, 3])}, CoefficientList[Series[num/(1-x)^22, {x, 0, 40}], x]] (* Harvey P. Dale, Dec 31 2012 *)
PROG
(PARI) x='x+O('x^50); A = prod(k=1, 22, (1-x^(3*k)))/(1-x)^22; Vec(A) \\ G. C. Greubel, Jul 0762018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); F:=(&*[(1-x^(3*k)): k in [1..22]])/(1-x)^22; Coefficients(R!(F)); // G. C. Greubel, Jul 06 2018
CROSSREFS
Sequence in context: A161900 A162364 A028571 * A325742 A010974 A022587
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 02 2009
STATUS
approved