login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A162663 Table by antidiagonals, T(n,k) is the number of partitions of {1..(nk)} that are invariant under a permutation consisting of n k-cycles. 20
1, 1, 1, 1, 2, 2, 1, 2, 7, 5, 1, 3, 8, 31, 15, 1, 2, 16, 42, 164, 52, 1, 4, 10, 111, 268, 999, 203, 1, 2, 28, 70, 931, 1994, 6841, 877, 1, 4, 12, 258, 602, 9066, 16852, 51790, 4140, 1, 3, 31, 106, 2892, 6078, 99925, 158778, 428131, 21147, 1, 4, 22, 329, 1144, 37778, 70402, 1224579, 1644732, 3827967, 115975 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

The upper left corner of the array is T(0,1).

Wlog, the permutation can be taken to be (1 2 ... k) (k+1 k+2 ... 2k) ... ((n-1)k+1 (n-1)k+2 ... nk).

Note that it is the partition that is invariant, not the individual parts. Thus for n=k=2 with permutation (1 2)(3 4), the partition 1,3|2,4 is counted; it maps to 2,4|1,3, which is the same partition.

LINKS

Franklin T. Adams-Watters and Alois P. Heinz, Antidiagonals n = 0..140, flattened (first 20 antidiagonals from Franklin T. Adams-Watters)

T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy]

OEIS Wiki, Sorting numbers

FORMULA

E.g.f. for column k: exp(Sum_{d|k} (exp(d*x) - 1) / d).

Equivalently, column k is the exponential transform of a(n) = Sum_{d|k} d^(n-1); this represents a set of n k-cycles, each repeating the same d elements (parts), but starting in different places.

T(n,k) = Sum_{P a partition of n} SP(P) * Product_( (sigma_{i-1}(k))^(P(i)-1) ), where SP is A036040 or A080575, and P(i) is the number of parts in P of size i.

T(n,k) = Sum_{0<=j<=n-1} A036073(n,j)*k^(n-1-j). - Andrey Zabolotskiy, Oct 22 2017

EXAMPLE

The table starts:

   1,   1,   1,   1,   1

   1,   2,   2,   3,   2

   2,   7,   8,  16,  10

   5,  31,  42, 111,  70

  15, 164, 268, 931, 602

MAPLE

with(numtheory):

A:= proc(n, k) option remember; `if`(n=0, 1, add(binomial(n-1, j-1)

       *add(d^(j-1), d=divisors(k))*A(n-j, k), j=1..n))

    end:

seq(seq(A(n, 1+d-n), n=0..d), d=0..12);  # Alois P. Heinz, Oct 29 2015

MATHEMATICA

max = 11; ClearAll[col]; col[k_] := col[k] =  CoefficientList[ Series[ Exp[ Sum[ (Exp[d*x] - 1)/d, {d, Divisors[k]}]], {x, 0, max}], x]*Range[0, max]!; t[n_, k_] := col[k][[n]]; Flatten[ Table[ t[n-k+1, k], {n, 1, max}, {k, n, 1, -1}] ] (* Jean-Fran├žois Alcover, Aug 08 2012, after e.g.f. *)

PROG

(PARI) amat(n, m)=local(r); r=matrix(n, m, i, j, 1); for(k=1, n-1, for(j=1, m, r[k+1, j]=sum (i=1, k, binomial(k-1, i-1)*sumdiv(j, d, r[k-i+1, j]*d^(i-1))))); r

acol(n, k)=local(fn); fn=exp(sumdiv(k, d, (exp(d*x+x*O(x^n))-1)/d)); vector(n+ 1, i, polcoeff(fn, i-1)*(i-1)!)

CROSSREFS

Columns: A000110, A002872, A002874, A141003, A036075, A141004, A036077, A141005, A141006, A141007, A036081, A141008, A141009, A141010, A141011.

Rows: A000012, A000005, A162664, A162665.

Cf. A084423, A036040, A036073, A080575.

Main diagonal gives A293850.

Sequence in context: A283170 A236144 A226328 * A005007 A188792 A192395

Adjacent sequences:  A162660 A162661 A162662 * A162664 A162665 A162666

KEYWORD

nice,nonn,tabl

AUTHOR

Franklin T. Adams-Watters, Jul 09 2009

EXTENSIONS

Offset set to 0 by Alois P. Heinz, Oct 29 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 22 09:32 EST 2017. Contains 295076 sequences.