login
A162646
G.f. is the polynomial (Product_{k=1..21} (1 - x^(3*k)))/(1-x)^21.
1
1, 21, 231, 1770, 10605, 52899, 228458, 877383, 3054744, 9783004, 29146359, 81511080, 215547605, 542233395, 1304195220, 3012135316, 6704660676, 14428720986, 30104266381, 61042236486, 120549237600, 232303223681
OFFSET
0,2
COMMENTS
This is a row of the triangle in A162499. Only finitely many terms are nonzero.
LINKS
MAPLE
m:=21: seq(coeff(series(mul((1-x^(3*k)), k=1..m)/(1-x)^m, x, n+1), x, n), n=0..21); # Muniru A Asiru, Jul 07 2018
MATHEMATICA
CoefficientList[Series[Times@@(1-x^(3*Range[21]))/(1-x)^21, {x, 0, 50}], x] (* G. C. Greubel, Jul 06 2018 *)
PROG
(PARI) x='x+O('x^50); A = prod(k=1, 21, (1-x^(3*k)))/(1-x)^21; Vec(A) \\ G. C. Greubel, Jul 06 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); F:=(&*[(1-x^(3*k)): k in [1..21]])/(1-x)^21; Coefficients(R!(F)); // G. C. Greubel, Jul 06 2018
CROSSREFS
Sequence in context: A188354 A064322 A126902 * A247615 A010973 A022586
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 02 2009
STATUS
approved