

A162637


G.f. is the polynomial (Product_{k=1..17} (1  x^(3*k)))/(1x)^17.


1



1, 17, 153, 968, 4828, 20196, 73643, 240295, 714969, 1967393, 5061733, 12282075, 28304167, 62307023, 131649309, 268075466, 527904757, 1008342693, 1873000449, 3390989490, 5995666674, 10371347659, 17579210264, 29237321394, 47774409494
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

This is a row of the triangle in A162499. Only finitely many terms are nonzero.


LINKS

G. C. Greubel, Table of n, a(n) for n = 0..442


MAPLE

m:=17: seq(coeff(series(mul((1x^(3*k)), k=1..m)/(1x)^m, x, n+1), x, n), n=0..24); # Muniru A Asiru, Jul 07 2018


MATHEMATICA

CoefficientList[Series[Times@@(1x^(3*Range[17]))/(1x)^17, {x, 0, 50}], x] (* G. C. Greubel, Jul 06 2018 *)


PROG

(PARI) x='x+O('x^50); A = prod(k=1, 17, (1x^(3*k)))/(1x)^17; Vec(A) \\ G. C. Greubel, Jul 0762018
(MAGMA) m:=50; R<x>:=PowerSeriesRing(Integers(), m); F:=(&*[(1x^(3*k)): k in [1..17]])/(1x)^17; Coefficients(R!(F)); // G. C. Greubel, Jul 06 2018


CROSSREFS

Sequence in context: A221737 A139617 A188353 * A247613 A010969 A022582
Adjacent sequences: A162634 A162635 A162636 * A162638 A162639 A162640


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, Dec 02 2009


STATUS

approved



