login
A162636
G.f. is the polynomial (Product_{k=1..16} (1 - x^(3*k)))/(1-x)^16.
1
1, 16, 136, 815, 3860, 15368, 53447, 166652, 474674, 1252424, 3094340, 7220342, 16022092, 34002856, 69342286, 136426157, 259829291, 480437936, 864657756, 1517989041, 2604677184, 4375680985, 7207862605, 11658111130, 18537088100
OFFSET
0,2
COMMENTS
This is a row of the triangle in A162499. Only finitely many terms are nonzero.
LINKS
MAPLE
m:=16: seq(coeff(series(mul((1-x^(3*k)), k=1..m)/(1-x)^m, x, n+1), x, n), n=0..24); # Muniru A Asiru, Jul 07 2018
MATHEMATICA
CoefficientList[Series[(Times@@Table[(1-x^(3n)), {n, 16}])/(1-x)^16, {x, 0, 40}], x] (* Harvey P. Dale, Jul 23 2013 *)
PROG
(PARI) x='x+O('x^50); A = prod(k=1, 16, (1-x^(3*k)))/(1-x)^16; Vec(A) \\ G. C. Greubel, Jul 06 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); F:=(&*[(1-x^(3*k)): k in [1..16]])/(1-x)^16; Coefficients(R!(F)); // G. C. Greubel, Jul 06 2018
CROSSREFS
Sequence in context: A231766 A302817 A303510 * A010968 A290896 A223031
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 02 2009
STATUS
approved