login
A162617
G.f. is the polynomial (1-x^3) * (1-x^6) * (1-x^9) * (1-x^12) * (1-x^15) * (1-x^18) * (1-x^21) * (1-x^24) * (1-x^27) * (1-x^30) / (1-x)^10.
1
1, 10, 55, 219, 705, 1947, 4784, 10715, 22253, 43395, 80223, 141648, 240305, 393602, 624920, 964955, 1453187, 2139455, 3085611, 4367220, 6075267, 8317827, 11221650, 14933610, 19621965, 25477374, 32713617, 41567965, 52301149, 65196880
OFFSET
0,2
COMMENTS
This is a row of the triangle in A162499.
Only finitely many terms are nonzero.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..155 (complete sequence)
MATHEMATICA
CoefficientList[ Series[Times @@ (1 - x^(3 Range@10))/(1 - x)^10, {x, 0, 70}], x] (* Vincenzo Librandi, Mar 14 2013 and slightly modified by Robert G. Wilson v, Jul 23 2018 *)
PROG
(PARI) x='x+O('x^155); Vec((1-x^3)*(1-x^6)*(1-x^9)*(1-x^12)*(1-x^15)*(1-x^18)*(1-x^21)*(1-x^24)*(1-x^27)*(1-x^30)/(1-x)^10) /* complete row */ \\ G. C. Greubel, Jul 06 2018
(Magma) m:=155; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x^3)*(1-x^6)*(1-x^9)*(1-x^12)*(1-x^15)*(1-x^18)*(1-x^21)*(1-x^24)*(1-x^27)*(1-x^30)/(1-x)^10)); /* complete row */ // G. C. Greubel, Jul 06 2018
CROSSREFS
Sequence in context: A341070 A373733 A244871 * A341139 A070212 A341207
KEYWORD
nonn,fini,full
AUTHOR
N. J. A. Sloane, Dec 02 2009
STATUS
approved