login
A162596
G.f. is the polynomial (1-x^3) * (1-x^6) * (1-x^9) * (1-x^12) * (1-x^15) * (1-x^18) * (1-x^21) * (1-x^24) / (1-x)^8.
1
1, 8, 36, 119, 322, 756, 1595, 3094, 5607, 9604, 15686, 24597, 37232, 54640, 78021, 108717, 148197, 198036, 259888, 335453, 426438, 534513, 661263, 808137, 976395, 1167054, 1380834, 1618106, 1878844, 2162583, 2468385, 2794815, 3139929
OFFSET
0,2
COMMENTS
This is a row of the triangle in A162499. Only finitely many terms are nonzero.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..100 (complete row)
MATHEMATICA
CoefficientList[Series[Times@@(1-x^(3*Range[8]))/(1-x)^8, {x, 0, 40}], x] (* Harvey P. Dale, Jun 03 2012 *)
PROG
(PARI) x='x+O('x^100); Vec((1-x^3)*(1-x^6)*(1-x^9)*(1-x^12)*(1-x^15)*(1- x^18)*(1-x^21)*(1-x^24)/(1-x)^8) \\ G. C. Greubel, Jul 06 2018
(Magma) m:=100; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x^3)*(1-x^6)*(1-x^9)*(1-x^12)*(1-x^15)*(1- x^18)*(1-x^21)*(1-x^24)/(1-x)^8)); // G. C. Greubel, Jul 06 2018
CROSSREFS
Sequence in context: A341068 A092365 A014343 * A331999 A341137 A051192
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 02 2009
STATUS
approved