login
A Chebyshev transform of the little Schroeder numbers A001003.
3

%I #15 Sep 08 2022 08:45:46

%S 1,1,2,9,37,156,695,3203,15118,72739,355475,1759624,8804341,44457125,

%T 226256114,1159387253,5976713665,30974296468,161285018771,

%U 843388543471,4427120165182,23319497761799,123221525405447,652989260163472

%N A Chebyshev transform of the little Schroeder numbers A001003.

%C Hankel transform is Somos-4 variant A162546.

%H Fung Lam, <a href="/A162548/b162548.txt">Table of n, a(n) for n = 0..1335</a>

%F G.f.: (1/(1+x^2))*s(x/(1+x^2)), s(x) the g.f. of A001003.

%F G.f.: (1+x+x^2 - sqrt(1-6*x+3*x^2-6*x^3+x^4))/(4*x*(1+x^2)).

%F G.f.: 1/(1+x^2-x/(1-2*x/(1+x^2-x/(1-2*x/(1+x^2-x/(1-2*x/(1+x+x^2/(1-... (continued fraction);

%F a(n) = Sum_{k=0..floor(n/2)} (-1)^k*C(n-k,k)*A001003(n-2k).

%F Conjecture: (n+1)*a(n) +3*(-2*n+1)*a(n-1) +(4*n-5)*a(n-2) +12*(-n+2)*a(n-3) +(4*n-11)*a(n-4) +3*(-2*n+7)*a(n-5) +(n-5)*a(n-6)=0. - _R. J. Mathar_, Nov 15 2012. (Formula verified and used for computations. - _Fung Lam_, Feb 19 2014)

%t CoefficientList[Series[(1+x+x^2 -Sqrt[1-6*x+3*x^2-6*x^3+x^4])/(4*x*(1+x^2)), {x,0,30}], x] (* _G. C. Greubel_, Feb 26 2019 *)

%o (PARI) my(x='x+O('x^30)); Vec((1+x+x^2 -sqrt(1-6*x+3*x^2-6*x^3+x^4))/( 4*x*(1+x^2))) \\ _G. C. Greubel_, Feb 26 2019

%o (Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1+x+x^2 -Sqrt(1-6*x+3*x^2-6*x^3+x^4))/(4*x*(1+x^2)) )); // _G. C. Greubel_, Feb 26 2019

%o (Sage) ((1+x+x^2 -sqrt(1-6*x+3*x^2-6*x^3+x^4))/(4*x*(1+x^2))).series(x, 30).coefficients(x, sparse=False) # _G. C. Greubel_, Feb 26 2019

%Y Cf. A001003, A162543.

%K easy,nonn

%O 0,3

%A _Paul Barry_, Jul 05 2009