login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A162531 Numbers k whose largest divisor <= sqrt(k) is 11. 18
121, 132, 143, 154, 165, 176, 187, 198, 209, 220, 231, 242, 253, 275, 297, 319, 341, 363, 385, 407, 451, 473, 517, 539, 583, 605, 649, 671, 737, 781, 803, 847, 869, 913, 979, 1067, 1111, 1133, 1177, 1199, 1243, 1331, 1397, 1441, 1507, 1529, 1639, 1661 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

See A161344 for more information.

LINKS

Table of n, a(n) for n=1..48.

FORMULA

Numbers k such that A033676(k)=11.

MAPLE

A033676 := proc(n) local dvs; dvs := sort(convert(numtheory[divisors](n), list)) ; op(floor((nops(dvs)+1)/2) , dvs) ; end: for n from 1 to 2500 do if A033676(n) = 11 then printf("%d, ", n) ; fi; od: # R. J. Mathar, Jul 13 2009

MATHEMATICA

ld = 11;

selQ[n_] := AllTrue[Divisors[n], # <= ld || #^2 > n&];

Select[ Range[ld, 200] ld, selQ] (* Jean-Fran├žois Alcover, Apr 14 2020 *)

CROSSREFS

Cf. A033676, A008578, A161344, A161345, A161424, A161835, A162526, A162527, A162528, A162529, A162530, A162532.

Sequence in context: A134941 A173070 A044867 * A050697 A319923 A020253

Adjacent sequences:  A162528 A162529 A162530 * A162532 A162533 A162534

KEYWORD

easy,nonn

AUTHOR

Omar E. Pol, Jul 05 2009

EXTENSIONS

More terms from R. J. Mathar and Jasper Mulder (jasper.mulder(AT)planet.nl), Jul 13 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 28 14:27 EST 2020. Contains 338724 sequences. (Running on oeis4.)