This site is supported by donations to The OEIS Foundation.

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A162512 Dirichlet inverse of A162511. 3
 1, -1, -1, 2, -1, 1, -1, -4, 2, 1, -1, -2, -1, 1, 1, 8, -1, -2, -1, -2, 1, 1, -1, 4, 2, 1, -4, -2, -1, -1, -1, -16, 1, 1, 1, 4, -1, 1, 1, 4, -1, -1, -1, -2, -2, 1, -1, -8, 2, -2, 1, -2, -1, 4, 1, 4, 1, 1, -1, 2, -1, 1, -2, 32, 1, -1, -1, -2, 1, -1, -1, -8, -1, 1, -2, -2, 1, -1, -1, -8, 8, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS The absolute value of this sequence is A162510. The Moebius function (A008683) can be defined in terms of this sequence: A008683(n) is equal to a(n) if a(n) is odd and zero otherwise. LINKS Antti Karttunen, Table of n, a(n) for n = 1..10000 G. P. Michon, Multiplicative functions FORMULA Multiplicative function with a(p^e)=-(-2)^(e-1) for any prime p and any positive exponent e. EXAMPLE a(n) = n/2 when n is a power of 4 (A000302). a(n) = A008683(n) when n is a squarefree number (A005117). MAPLE A162512 := proc(n)     local a, f;     a := 1;     for f in ifactors(n)[2] do         a := -a*(-2)^(op(2, f)-1) ;     end do:     return a; end proc: seq(A162512(n), n=1..100) ; # R. J. Mathar, May 20 2017 PROG (PARI) a(n) = my(f=factor(n)); for(i=1, #f~, f[i, 1]=-(-2)^(f[i, 2]-1); f[i, 2]=1); factorback(f); \\ Michel Marcus, May 20 2017 (Python) from sympy import factorint from operator import mul def a(n):     f=factorint(n)     return 1 if n==1 else reduce(mul, [-(-2)**(f[i] - 1) for i in f]) # Indranil Ghosh, May 20 2017 (Scheme) (define (A162512 n) (if (= 1 n) n (* (- (expt -2 (- (A067029 n) 1))) (A162512 (A028234 n))))) ;; Antti Karttunen, May 20 2017, after the given multiplicative formula. CROSSREFS Cf. A005117, A008683, A067029, A076479, A162150, A162511 Sequence in context: A252890 A173398 A104404 * A162510 A235388 A252733 Adjacent sequences:  A162509 A162510 A162511 * A162513 A162514 A162515 KEYWORD easy,mult,sign,changed AUTHOR Gerard P. Michon, Jul 05 2009, Jul 06 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.