%I #8 May 08 2018 15:11:56
%S -13,401,-68323,2067169,-91473331,250738892357,-12072244190753,
%T 105796895635531,-29605311573467996893,9784971385947359480303,
%U -5408317625058335310276319,2111561851139130085557412009
%N Numerators of the column sums of the ZG1 matrix
%C The ZG1 matrix coefficients are defined by ZG1[2m-1,1] = 2*zeta(2m-1) for m = 2, 3, .. , and the recurrence relation ZG1[2m-1,n] = (ZG1[2m-3,n-1] - (n-1)^2*ZG1[2m-1,n-1])/(n*(n-1)) with m = .. , -2, -1, 0, 1, 2, .. and n = 1, 2, 3, .. , under the condition that n <= (m-1). As usual zeta(m) is the Riemann zeta function. For the ZG2 matrix, the even counterpart of the ZG1 matrix, see A008955.
%C These two formulas enable us to determine the values of the ZG1[2*m-1,n] coefficients, with m all integers and n all positive integers, but not for all. If we choose, somewhat but not entirely arbitrarily, ZG1[1,1] = 2*gamma, with gamma the Euler-Mascheroni constant, we can determine them all.
%C The coefficients in the columns of the ZG1 matrix, for m >= 1 and n >= 2, can be generated with GFZ(z;n) = (hg(n)*CFN1(z;n)*GFZ(z;n=1) + ZETA(z;n))/pg(n) with pg(n) = 6*(n-1)!* (n)!*A160476(n) and hg(n) = 6*A160476(n). For the CFN1(z;n) and the ZETA(z;n) polynomials see A160474.
%C The column sums cs(n) = sum(ZG1[2*m-1,n], m = 1 .. infinity), for n >= 2, of the ZG1 matrix can be determined with the first Maple program. In this program we have made use of the remarkable fact that if we take ZGx[2*m-1,n] = 2, for m >= 1, and ZGx[ -1,n] = ZG1[ -1,n] and assume that the recurrence relation remains the same we find that the column sums of this new matrix converge to the same values as the original cs(n).
%C The ZG1[2*m-1,n] matrix coefficients can be generated with the second Maple program.
%C The ZG1 matrix is related to the ZS1 matrix, see A160474 and the formulas below.
%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, Chapter 23, pp. 811-812.
%F a(n) = numer(cs(n)) and denom(cs(n)) = A162447(n).
%F with cs(n) = sum(ZG1[2*m-1,n], m = 1 .. infinity) for n >= 2.
%F GFZ(z;n) = sum( ZG1[2*m-1,n]*z^(2*m-2),m=1..infinity)
%F GFZ(z;n) = ZG1[ -1,n-1]/(n*(n-1))+(z^2-(n-1)^2)*GFZ(z;n-1)/(n*(n-1)) for n >= 2 with GFZ(z;n=1) = -Psi(1+z) - Psi(1-z).
%F ZG1[ -1,n] = binomial(2*n,n)*Omega[n] = A000984(n)*A002195(n)/A002196(n).
%F ZG1[2*m-1,n] = b(n)*ZS1[2*m-1,n] with b(n) = binomial(2*n,n)/2^(2*n-1) for n >= 1.
%e The first few generating functions GFZ(z;n) are:
%e GFZ(z;2) = (6*(1*z^2-1)*GFZ(z;1) + (-1))/12
%e GFZ(z;3) = (60*(z^4-5*z^2+4)*GFZ(z;1) + (51-10*z^2))/720
%e GFZ(z;4) = (1260*(z^6-14*z^4+49*z^2-36)*GFZ(z;1) + (-10594+2961*z^2-210*z^4))/181440
%p nmax := 13; mmax := nmax: with(combinat): cfn1 := proc(n, k): sum((-1)^j1*stirling1(n+1, n+1-k+j1)*stirling1(n+1, n+1-k-j1), j1=-k..k) end proc: Omega(0):=1: for n from 1 to nmax do Omega(n) := (sum((-1)^(k1+n+1)*(bernoulli(2*k1)/(2*k1))*cfn1(n-1, n-k1), k1=1..n))/(2*n-1)! od: for n from 1 to nmax do ZG1[ -1, n] := binomial(2*n, n)*Omega(n) od: for n from 1 to nmax do ZGx[ -1, n] := ZG1[ -1, n] od: for m from 1 to mmax do ZGx[2*m-1, 1] := 2 od: for n from 2 to nmax do for m from 1 to mmax do ZGx[2*m-1, n] := (((ZGx[2*m-3, n-1]-(n-1)^2*ZGx[2*m-1, n-1])/(n*(n-1)))) od; s(n) := 0: for m from 1 to mmax do s(n) := s(n) + ZGx[2*m-1, n] od: od: seq(s(n), n=2..nmax);
%p # End program 1
%p nmax1 := 5; ncol := 3; Digits := 20: mmax1 := nmax1: with(combinat): cfn1 := proc(n, k): sum((-1)^j1*stirling1(n+1, n+1-k+j1)*stirling1(n+1, n+1-k-j1), j1=-k..k) end proc: ZG1[1, 1] := evalf(2*gamma): for m from 1 to mmax1 do ZG1[1-2*m, 1] := -bernoulli(2*m)/m od: for m from 2 to mmax1 do ZG1[2*m-1, 1] := evalf(2*Zeta(2*m-1)) od: for n from 1 to nmax1 do for m from -mmax1 to mmax1 do ZG1[2*m-1, n] := sum((-1)^(k1+1)*cfn1(n-1, k1-1)*ZG1[2*m-(2*n-2*k1+1), 1] /((n-1)!*(n)!), k1=1..n) od; od; for m from -mmax1+ncol to mmax1 do ZG1[2*m-1, ncol] := ZG1[2*m-1, ncol] od;
%p # End program 2
%p # Maple programs edited by _Johannes W. Meijer_, Sep 25 2012
%Y See A162447 for the denominators of the column sums.
%Y The pg(n) and hg(n) sequences lead to A160476.
%Y The ZG1[ -1, n] coefficients lead to A000984, A002195 and A002196.
%Y The ZETA(z, n) polynomials and the ZS1 matrix lead to the Zeta triangle A160474.
%Y The CFN1(z, n), the cfn1(n, k) and the ZG2 matrix lead to A008955.
%Y The b(n) sequence equals A001790(n)/ A120777(n-1) for n >= 1.
%Y Cf. A001620 (gamma) and A010790 (n!*(n+1)!).
%Y Cf. A162440 (EG1 matrix), A162443 (BG1 matrix) and A162448 (LG1 matrix)
%K easy,frac,sign
%O 2,1
%A _Johannes W. Meijer_, Jul 06 2009