login
A162445
A sequence related to the Beta function
1
1, 8, 384, 46080, 2064384, 3715891200, 392398110720, 1428329123020800, 274239191619993600, 1678343852714360832000, 102043306245033138585600, 4714400748520531002654720000, 160144566965128191597871104000
OFFSET
0,2
COMMENTS
We define F(z) = Beta(1/2-z/2,1/2+z/2)/Beta(1/2,1/2) = 1/sin(Pi*(1+z)/2) with Beta(z,w) the Beta function. See A008956 for a closely related function.
For the Taylor series expansion of F(z) we can write F(z) = sum(b(n)*(Pi*z)^(2*n)/a(n), n=0..infinity) with b(n) = A046976(n) and a(n) the sequence given above.
We can also write F(z) = sum(c(n)*(Pi*z)^(2*n)/d(n), n=0..infinity) with c(n) = A000364(n) and d(n) = A067624(n).
If p(n) is the exponent of the prime factor 2 in a(n) than p(n) = A120738(n) and 2^p(n) = A061549(n) = abs((4*n)!!/A117972(n)).
FORMULA
a(n) = denom(euler(2*n)/(4*n)!!)
MATHEMATICA
Denominator[Table[EulerE[2n]/(4n)!!, {n, 0, 20}]] (* Harvey P. Dale, Jun 23 2013 *)
CROSSREFS
Bisection of A050971
Equals 2^(2*n)*A046977(n)
Sequence in context: A151932 A265865 A096205 * A067624 A096204 A153836
KEYWORD
easy,frac,nonn
AUTHOR
Johannes W. Meijer, Jul 06 2009
STATUS
approved