The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A162441 Numerators of the column sums of the EG1 matrix coefficients 2
 3, 15, 35, 315, 693, 1001, 6435, 109395, 230945, 969969, 2028117, 16900975, 35102025, 145422675, 20036013, 9917826435, 20419054425, 27981667175, 172308161025, 282585384081, 964378691705, 11835556670925, 24185702762325 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 COMMENTS For the definition of the EG1 matrix coefficients see A162440. We define the columns sums by cs(n) = sum(EG1[2*m-1,n], m = 1.. infinity) for n => 2. The row sums of the EG1 matrix follow the same pattern as those of its even counterpart the EG2 matrix, see A161739 and the formulas. LINKS FORMULA a(n) = numer(cs(n)) and denom(cs(n)) = A162442(n) with cs(n) = (2^(2-2*n)/(n-1))*((2*n-1)!/((n-1)!^2)). cs(n) = 2*EG1[ -1,n]/(n-1) with EG1[ -1,n] = 2^(1-2*n)*(2*n-1)!/((n-1)!^2). cs(n) = (1/(n-1))*A001803(n-1)/A046161(n-1) for n=>2. rs(2*m-1,p=0) = sum((n^p)*EG1(2*m-1,n), n = 1..infinity) = 2*zeta(2*m-2) for m =>2. CROSSREFS Equals (2*n-1)*A052468(n-1) Cf. A162440 and A162442 [denom(cs(n))]. Cf. A161739 (RSEG2 triangle), A001803 and A046161. Sequence in context: A290717 A019009 A290716 * A001803 A161738 A062741 Adjacent sequences:  A162438 A162439 A162440 * A162442 A162443 A162444 KEYWORD easy,frac,nonn AUTHOR Johannes W. Meijer, Jul 06 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 10 14:50 EDT 2020. Contains 336381 sequences. (Running on oeis4.)