login
Number of reduced words of length n in the Weyl group D_39.
49

%I #7 Feb 21 2024 11:44:01

%S 1,39,779,10621,111149,951899,6946342,44406362,253761833,1316306927,

%T 6272724030,27727887538,114598003169,445761614951,1641026089535,

%U 5744952627593,19204564723487,61521719896985,189464360814690

%N Number of reduced words of length n in the Weyl group D_39.

%C Computed with MAGMA using commands similar to those used to compute A161409.

%D N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche IV.)

%D J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.

%H <a href="/index/Gre#GROWTH">Index entries for growth series for groups</a>

%F G.f. for D_m is the polynomial f(n) * Product( f(2i), i=1..n-1 )/ f(1)^n, where f(k) = 1-x^k. Only finitely many terms are nonzero. This is a row of the triangle in A162206.

%Y Growth series for groups D_n, n = 3,...,50: A161435, A162207, A162208, A162209, A162210, A162211, A162212, A162248, A162288, A162297, A162300, A162301, A162321, A162327, A162328, A162346, A162347, A162359, A162360, A162364, A162365, A162366, A162367, A162368, A162369, A162370, A162376, A162377, A162378, A162379, A162380, A162381, A162384, A162388, A162389, A162392, A162399, A162402, A162403, A162411, A162412, A162413, A162418, A162452, A162456, A162461, A162469, A162492; also A162206.

%K nonn

%O 0,2

%A _John Cannon_ and _N. J. A. Sloane_, Dec 01 2009