%I
%S 1,37,702,9102,90686,740222,5153693,31465577,171895451,853189623,
%T 3893872009,16498746405,65414952123,244293496151,864100862802,
%U 2908662063474,9355685557836,28857543077604,85625485744207
%N Number of reduced words of length n in the Weyl group D_37.
%C Computed with MAGMA using commands similar to those used to compute A161409.
%D N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche IV.)
%D J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under PoincarĂ© polynomial.
%F G.f. for D_m is the polynomial f(n) * Product( f(2i), i=1..n1 )/ f(1)^n, where f(k) = 1x^k. Only finitely many terms are nonzero. This is a row of the triangle in A162206.
%K nonn
%O 0,2
%A _John Cannon_ and _N. J. A. Sloane_, Dec 01 2009
