login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangular array P*(2*I - P^2)^-1, where P is Pascal's triangle A007318 and I is the identity matrix.
3

%I #9 Nov 02 2019 11:41:14

%S 1,3,1,17,6,1,147,51,9,1,1697,588,102,12,1,24483,8485,1470,170,15,1,

%T 423857,146898,25455,2940,255,18,1,8560947,2966999,514143,59395,5145,

%U 357,21,1,197613377,68487576,11867996,1371048,118790,8232,476,24,1

%N Triangular array P*(2*I - P^2)^-1, where P is Pascal's triangle A007318 and I is the identity matrix.

%C Unsigned inverse of A162315.

%C The row generating polynomials of this triangle may be used to evaluate the weighted sums of powers of odd numbers

%C (1)... 1^m + 2*3^m + 4*5^m + ... + 2^n*(2*n+1)^m

%C and also the sums

%C (2)... 1^m + (1/2)*3^m + (1/4)*5^m + ... + (1/2)^n*(2*n+1)^m.

%C See the Formula section below.

%C We make a few remarks about the general array M(a) := a*P*(I-a*P^2)^-1, where a <> 1, and its connection with weighted sums of powers of odd numbers. The present case corresponds to a = 1/2. Compare with the remarks in A162312.

%C The array M(a) begins

%C /

%C | a/(1-a)

%C | (a^2+a)/(1-a)^2 ................. a/(1-a)

%C | (a^3+6*a^2+a)/(1-a)^3 ........... 2*(a^2+a)/(1-a)^2 ... a/(1-a)

%C (a^4+23*a^3+23*a^2+a)/(1-a)^4 ...

%C | .

%C \ .

%C In the first column we recognize the numerator polynomials as the Eulerian polynomials of type B. See A060187.

%C The e.g.f. for this array is

%C (3)... a*exp((x+1)*t)/(1-a*exp(2*t)) = a/(1-a) +[(a^2+a)/(1-a)^2 + a/(1-a)*x]*t + [(a^3+6*a^2+a)/(1-a)^3 + 2*(a^2+a)*x/(1-a)^2 + a/(1-a)*x^2]*t^2/2! + ....

%C The row polynomials P_m(x), which depend on a, satisfy the difference equation

%C (4)... P_m(x) - a*P_m(x+2) = a*(x+1)^m.

%C for m >= 1.

%C The first few values are

%C P_0(x) = a/(1-a), P_1(x) = a*x/(1-a) + (a^2+a)/(1-a)^2 and

%C P_2(x) = a*x^2/(1-a) + 2*(a^2+a)*x/(1-a)^2 + (a^3+6*a^2+a)/(1-a)^3.

%C Using (4) leads to the evaluations of the weighted sums of powers of even and odd positive integers:

%C (5)... sum {k = 1..n} a^k*(2*k)^m = P_m(1) - a^n*P_m(2*n+1)

%C and

%C (6)... sum {k = 1..n} a^k*(2*k-1)^m = P_m(0) - a^n*P_m(2*n),

%C with m = 0,1,2,... and a <> 1.

%C In the remaining case a = 1 the sums are evaluated in terms of the Bernoulli polynomials.

%F TABLE ENTRIES

%F (1)... T(n,k) = binomial(n,k)*A080253(n-k).

%F GENERATING FUNCTION

%F (2)... exp((x+1)*t)/(2-exp(2*t)) = 1 + (3+x)*t + (17+6*x+x^2)*t^2/2!

%F + ....

%F The e.g.f. can also be written as

%F (3)... exp(x*t)*G(t), where G(t) = exp(t)/(2-exp(2*t)) is the e.g.f. for A080253.

%F ROW GENERATING POLYNOMIALS

%F The row generating polynomials R_n(x) form an Appell sequence. The first few values are

%F R_0(x) = 1, R_1(x) = 3 + x, R_2(x) = 17 + 6*x + x^2 and

%F R_3(x) = 147 + 51*x + 9*x^2 + x^3.

%F The row polynomials may be recursively computed by means of

%F (4)... R_n(x) = (x+1)^n + sum {k=0..n-1} 2^(n-k)*binomial(n,k)*R_k(x).

%F An explicit formula is

%F (5)... R_n(x) = sum {j = 0..n} sum {k = 0..j} (-1)^(j-k)*binomial(j,k)*(x+2*k+1)^n).

%F There is also a representation as an infinite series

%F (6)... R_n(x) = 1/2*sum {k = 0..inf}(1/2)^k*(x+2*k+1)^n.

%F SUMS OF POWERS OF INTEGERS

%F The row polynomials satisfy the difference equation

%F (7)... 2*R_n(x) - R_n(x+2) = (x+1)^n,

%F and hence may be used to evaluate the weighted sums of powers of odd integers

%F (8)... sum {k=0..n-1} (1/2)^k*(2*k+1)^m = 2*R_m(0)-1/2^(n-1)*R_m(2*n)

%F as well as

%F (9)... sum {k=0..n-1} 2^k*(2*k+1)^m = (-1)^m*(2^n*R_m(-2*n)-R_m(0)).

%F For example, m = 2 gives

%F (10)... sum {k=0..n-1} (1/2)^k*(2*k+1)^2 = 34-2^(1-n)*(4*n^2+12*n+17)

%F and

%F (11)... sum {k = 0..n-1} 2^k*(2*k+1)^2 = 2^n*(4*n^2 - 12*n + 17)-17.

%F RELATIONS WITH OTHER SEQUENCES

%F (12)... Row sums = [1,4,24,208,2400,...] = 2^n*A000629(n) = A162314(n).

%F (13)... Column 0 = [1,3,17,147,1697,...] = A080253.

%F The identity

%F (14)... R_n(2*x-1) = 2^n*P_n(x),

%F where P_n(x) are the row generating polynomials of A154921, provides a surprising connection between (6) and the result

%F (15)... sum {k = 0..n-1} (1/2)^k*k^m = 2*P_m(0) - (1/2)^(n-1)*P_m(n).

%e Triangle begins

%e n\k|.......0.......1......2......3......4......5......6

%e =======================================================

%e 0..|.......1

%e 1..|.......3.......1

%e 2..|......17.......6......1

%e 3..|.....147......51......9......1

%e 4..|....1697.....588....102.....12......1

%e 5..|...24483....8485...1470....170.....15......1

%e 6..|..423857..146898..25455...2940....255.....18......1

%e ...

%t m = 8;

%t P = Table[Binomial[n, k], {n, 0, m}, {k, 0, m}];

%t T = P.Inverse[2 IdentityMatrix[m+1] - P.P];

%t Table[T[[n+1, k+1]], {n, 0, m}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Nov 02 2019 *)

%Y A000629, A007318, A060187, A080253 (column 0), A154921, A162312, A162314 (row sums), A162315 (unsigned inverse).

%K easy,nonn,tabl

%O 0,2

%A _Peter Bala_, Jul 01 2009