login
A162287
G.f. satisfies: A(x) = exp( Sum_{n>=1} [Sum{d|n} A(2^d*n*x/d)^d/d]*x^n ).
0
1, 1, 4, 29, 417, 11629, 635575, 68495847, 14649466838, 6240047796536, 5303983470442186, 9004906378193235074, 30552213347609385960757, 207213131514991438965771387, 2809810971676044211903643478219
OFFSET
0,3
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 29*x^3 + 417*x^4 + 11629*x^5 +...
log(A(x)) = A(2*x)*x + [A(2*2x) + A(2^2*x)^2/2]*x^2 + [A(2*3x) + A(2^3*x)^3/3]*x^3 + [A(2*4x) + A(2^2*2x)^2/2 + A(2^4*x)^4/4]*x^4 +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sumdiv(m, d, m*subst(A, x, 2^d*m*x/d+x*O(x^n))^d/d)*x^m/m))); polcoeff(A, n)}
CROSSREFS
Cf. A162286.
Sequence in context: A210526 A221079 A370165 * A324227 A277357 A173715
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 29 2009
STATUS
approved