login
A162262
a(n) = (2*n^3 + 5*n^2 - 13*n)/2.
1
-3, 5, 30, 78, 155, 267, 420, 620, 873, 1185, 1562, 2010, 2535, 3143, 3840, 4632, 5525, 6525, 7638, 8870, 10227, 11715, 13340, 15108, 17025, 19097, 21330, 23730, 26303, 29055, 31992, 35120, 38445, 41973, 45710, 49662, 53835, 58235, 62868, 67740
OFFSET
1,1
FORMULA
Row sums from A144670: a(n) = Sum_{m=1..n} (2*m*n + m + n - 7).
From Vincenzo Librandi, Mar 05 2012: (Start)
G.f.: x*(-3 + 17*x - 8*x^2)/(1-x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)
MATHEMATICA
LinearRecurrence[{4, -6, 4, -1}, {-3, 5, 30, 78}, 50] (* or *) CoefficientList[Series[(-3+17*x-8*x^2)/(1-x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Mar 04 2012 *)
Table[(2n^3+5n^2-13n)/2, {n, 60}] (* Harvey P. Dale, Jul 03 2023 *)
CROSSREFS
Cf. A144670.
Sequence in context: A214655 A341037 A181429 * A151373 A189739 A372800
KEYWORD
sign,easy
AUTHOR
Vincenzo Librandi, Jun 29 2009
EXTENSIONS
New name from Vincenzo Librandi, Mar 05 2012
STATUS
approved