login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A162257 a(n) = (2*n^3 + 5*n^2 - 11*n)/2. 1
-2, 7, 33, 82, 160, 273, 427, 628, 882, 1195, 1573, 2022, 2548, 3157, 3855, 4648, 5542, 6543, 7657, 8890, 10248, 11737, 13363, 15132, 17050, 19123, 21357, 23758, 26332, 29085, 32023, 35152, 38478, 42007, 45745, 49698, 53872, 58273, 62907, 67780 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

Row sums from A155550: a(n) = Sum_{m=1..n} 2*m*n + m + n - 6.

From Vincenzo Librandi, Mar 04 2012: (Start)

G.f.: x*(-2 + 15*x - 7*x^2)/(1-x)^4.

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)

MAPLE

A162257:=n->(2*n^3+5*n^2-11*n)/2: seq(A162257(n), n=1..80); # Wesley Ivan Hurt, Jan 30 2017

MATHEMATICA

CoefficientList[Series[(-2+15*x-7*x^2)/(1-x)^4, {x, 0, 40}], x] (* or *) LinearRecurrence[{4, -6, 4, -1}, {-2, 7, 33, 82}, 50] (* Vincenzo Librandi, Mar 04 2012 *)

CROSSREFS

Cf. A155550.

Sequence in context: A112006 A067551 A080119 * A214954 A055724 A301433

Adjacent sequences:  A162254 A162255 A162256 * A162258 A162259 A162260

KEYWORD

sign,easy

AUTHOR

Vincenzo Librandi, Jun 29 2009

EXTENSIONS

New name from Vincenzo Librandi, Mar 04 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 21 18:45 EST 2019. Contains 320376 sequences. (Running on oeis4.)