login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A162254 a(n) = (2*n^3 + 5*n^2 + n)/2. 3
4, 19, 51, 106, 190, 309, 469, 676, 936, 1255, 1639, 2094, 2626, 3241, 3945, 4744, 5644, 6651, 7771, 9010, 10374, 11869, 13501, 15276, 17200, 19279, 21519, 23926, 26506, 29265, 32209, 35344, 38676, 42211, 45955, 49914, 54094, 58501, 63141 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Row sums from A083487.

Row 2 of the convolution array A213831. - Clark Kimberling, Jul 04 2012

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

From Vincenzo Librandi, Mar 04 2012: (Start)

G.f.: x*(4 + 3*x - x^2)/(1-x)^4.

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)

MATHEMATICA

LinearRecurrence[{4, -6, 4, -1}, {4, 19, 51, 106}, 50] (* or *) CoefficientList[Series[(4+3*x-x^2)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 04 2012 *)

PROG

(PARI) a(n)=n*(5*n+1)/2+n^3 \\ Charles R Greathouse IV, Jan 11 2012

CROSSREFS

Sequence in context: A067981 A174458 A263759 * A138617 A304993 A171354

Adjacent sequences:  A162251 A162252 A162253 * A162255 A162256 A162257

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Jun 29 2009

EXTENSIONS

New name from Charles R Greathouse IV, Jan 11 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 18 00:19 EST 2019. Contains 320237 sequences. (Running on oeis4.)