login
A162254
n*(2*n^2 + 5*n + 1)/2.
6
4, 19, 51, 106, 190, 309, 469, 676, 936, 1255, 1639, 2094, 2626, 3241, 3945, 4744, 5644, 6651, 7771, 9010, 10374, 11869, 13501, 15276, 17200, 19279, 21519, 23926, 26506, 29265, 32209, 35344, 38676, 42211, 45955, 49914, 54094, 58501, 63141
OFFSET
1,1
COMMENTS
Row sums from A083487.
Row 2 of the convolution array A213831. - Clark Kimberling, Jul 04 2012
FORMULA
From Vincenzo Librandi, Mar 04 2012: (Start)
G.f.: x*(4 + 3*x - x^2)/(1-x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)
MATHEMATICA
LinearRecurrence[{4, -6, 4, -1}, {4, 19, 51, 106}, 50] (* or *) CoefficientList[Series[(4+3*x-x^2)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 04 2012 *)
PROG
(PARI) a(n)=n*(5*n+1)/2+n^3 \\ Charles R Greathouse IV, Jan 11 2012
CROSSREFS
Sequence in context: A067981 A174458 A263759 * A138617 A304993 A171354
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jun 29 2009
EXTENSIONS
New name from Charles R Greathouse IV, Jan 11 2012
STATUS
approved