This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A162167 E.g.f. satisfies: A(x) = exp(x*exp(2*x*exp(3*x*A(x)))). 0
 1, 1, 5, 61, 945, 18401, 448033, 13162689, 452456833, 17814732769, 790829204481, 39087256226129, 2129136397634689, 126740704552712433, 8186173905423123457, 570241787130949813441, 42616054790603864116737 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS More generally, if A(x) = exp(p*x*exp(q*x*exp(r*x*A(x))) where A(x)^m = Sum_{n>=0} a(n,m)*x^n/n!, then a(n,m) = Sum_{k=0..n} Sum_{j=0..k} p^(n-k)*q^(k-j)*r^j*C(n,k)*C(k,j)*m*(j+m)^(n-k-1)*(n-k)^(k-j)*(k-j)^j. ... In general, if A(x) = F(x*G(x*H(x*A(x))) with F(0)=G(0)=H(0)=1, where A(x)^m = Sum_{n>=0} a(n,m)*x^n, then a(n,m) = Sum_{k=0..n} Sum_{j=0..k} {[x^(n-k)] F(x)^(j+m)*m/(j+m)} * {[x^(k-j)] G(x)^(n-k)} * {[x^j] H(x)^(k-j)}. ... LINKS FORMULA a(n) = Sum_{k=0..n} Sum_{j=0..k} 2^(k-j)*3^j*C(n,k)*C(k,j)*(j+1)^(n-k-1)*(n-k)^(k-j)*(k-j)^j. EXAMPLE E.g.f.: A(x) = 1 + x + 5*x^2/2! + 61*x^3/3! + 945*x^4/4! + 18401*x^5/5! +... PROG (PARI) {a(n, m=1, p=1, q=2, r=3)=n!*sum(k=0, n, sum(j=0, k, p^(n-k)*q^(k-j)*r^j*m*(j+m)^(n-k-1)/(n-k)!*(n-k)^(k-j)/(k-j)!*(k-j)^j/j!))} CROSSREFS Cf. A162161, A162162. Sequence in context: A064328 A012060 A012167 * A134282 A146760 A294024 Adjacent sequences:  A162164 A162165 A162166 * A162168 A162169 A162170 KEYWORD nonn AUTHOR Paul D. Hanna, Jun 27 2009 EXTENSIONS Paul D. Hanna, Jun 28 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 23 22:45 EDT 2019. Contains 326254 sequences. (Running on oeis4.)