login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A162162 G.f. satisfies: A(x) = Catalan(x + x^2 + x^3*A(x)) where Catalan(x) = (1-sqrt(1-4*x))/(2x) is the g.f. of A000108. 1
1, 1, 3, 10, 36, 139, 560, 2328, 9914, 43027, 189619, 846267, 3817105, 17373048, 79687447, 367991891, 1709477714, 7983062151, 37454903501, 176470241003, 834601583199, 3960757007408, 18855383609076, 90019104197240 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..23.

FORMULA

O.g.f.: A(x) = 1 + (x+x^2)*A(x)^2 + x^3*A(x)^3 [From Simon Plouffe].

a(n) = Sum_{k=0..n} Sum_{j=0..k} C(2*n-2*k+j+1,n-k)/(2*n-2*k+j+m) * C(n-k,k-j)*C(k-j,j).

Let A(x)^m = Sum_{n>=0} a(n,m)*x^n/n!, then

a(n,m) = Sum_{k=0..n} Sum_{j=0..k} C(2*n-2*k+j+m,n-k)*m/(2*n-2*k+j+m) * C(n-k,k-j)*C(k-j,j).

EXAMPLE

G.f.: A(x) = 1 + x + 3*x^2 + 10*x^3 + 36*x^4 + 139*x^5 + 560*x^6 +...

A(x) = Catalan(x + x^2 + x^3*A(x)) where:

Catalan(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +...

PROG

(PARI) {a(n, m=1)=sum(k=0, n, sum(j=0, k, binomial(2*n-2*k+j+m, n-k)*m/(2*n-2*k+j+m)*binomial(n-k, k-j)*binomial(k-j, j)))}

(PARI) {a(n, m=1)=local(A=1+x+x*O(x^n)); for(i=1, n, A=2/(1+sqrt(1-4*(x+x^2 +x^3*A)))); polcoeff(A^m, n)}

(PARI) {a(n, m=1)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1+(x+x^2)*A^2+x^3*A^3); polcoeff(A^m, n)}

CROSSREFS

Cf. A000108.

Sequence in context: A149041 A202834 A129247 * A149042 A081921 A165792

Adjacent sequences:  A162159 A162160 A162161 * A162163 A162164 A162165

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jun 26 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 17 19:53 EST 2017. Contains 294834 sequences.