login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A161962 Odd numbers k such that phi(k) < phi(k+1). 8
105, 165, 315, 525, 585, 735, 1155, 1365, 1485, 1575, 1755, 1785, 1815, 1995, 2145, 2205, 2415, 2475, 2535, 2805, 2835, 3003, 3045, 3315, 3465, 3675, 3885, 3927, 4095, 4125, 4305, 4455, 4485, 4515, 4725, 4785, 4845, 4935, 5115, 5145 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

If k is even then for obvious reasons phi(k) will usually be less than phi(k+1). So it is more interesting to see when this occurs for odd k.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..5000

EXAMPLE

105 is in the sequence since phi(105)=48 and phi(106)=52.

MAPLE

with(numtheory): a := proc (n) if `mod`(n, 2) = 1 and phi(n) < phi(n+1) then n else end if end proc: seq(a(n), n = 1 .. 6000); # Emeric Deutsch, Jul 11 2009

MATHEMATICA

Select[Range[5500], OddQ[#] && EulerPhi[#] < EulerPhi[# + 1] &] (* G. C. Greubel, Feb 27 2019 *)

PROG

(Sage) [n for n in (1..5500) if mod(n+1, 2)==0 and euler_phi(n) < euler_phi(n+1)] # G. C. Greubel, Feb 27 2019

(MAGMA) [n: n in [1..5500] | ((n+1) mod 2 eq 0) and (EulerPhi(n) lt EulerPhi(n+1))]; // G. C. Greubel, Feb 27 2019

(PARI) for(n=1, 5500, if(Mod(n+1, 2)==0 && eulerphi(n) < eulerphi(n+1), print1(n", "))) \\ G. C. Greubel, Feb 27 2019

CROSSREFS

Cf. A000010, A161963.

Sequence in context: A128278 A234103 A128284 * A046887 A026066 A167629

Adjacent sequences:  A161959 A161960 A161961 * A161963 A161964 A161965

KEYWORD

easy,nonn

AUTHOR

David Angell (angell(AT)maths.unsw.edu.au), Jun 22 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 18 04:44 EST 2019. Contains 329248 sequences. (Running on oeis4.)