login
A161941
a(n) = ((4+sqrt(2))*(2+sqrt(2))^n + (4-sqrt(2))*(2-sqrt(2))^n)/4.
5
2, 5, 16, 54, 184, 628, 2144, 7320, 24992, 85328, 291328, 994656, 3395968, 11594560, 39586304, 135156096, 461451776, 1575494912, 5379076096, 18365314560, 62703106048, 214081795072, 730920968192, 2495520282624, 8520239194112
OFFSET
0,1
COMMENTS
Second binomial transform of A135530.
LINKS
C. Bautista-Ramos and C. Guillen-Galvan, Fibonacci numbers of generalized Zykov sums, J. Integer Seq., 15 (2012), #12.7.8.
FORMULA
a(n) = 4*a(n-1) - 2*a(n-2) for n>1; a(0) = 2; a(1) = 5.
G.f.: (2-3*x)/(1-4*x+2*x^2).
a(n) = 2*A007070(n) - 3*A007070(n-1). - R. J. Mathar, Oct 20 2017
MATHEMATICA
LinearRecurrence[{4, -2}, {2, 5}, 30] (* Harvey P. Dale, May 26 2012 *)
PROG
(Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((4+r)*(2+r)^n+(4-r)*(2-r)^n)/4: n in [0..24] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 01 2009
(PARI) x='x+O('x^30); Vec((2-3*x)/(1-4*x+2*x^2)) \\ G. C. Greubel, Jan 27 2018
CROSSREFS
Cf. A135530, A161944 (third binomial transform of A135530).
Sequence in context: A018191 A006191 A149959 * A120899 A149960 A149961
KEYWORD
nonn,easy
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Jun 22 2009
EXTENSIONS
Edited and extended beyond a(4) by Klaus Brockhaus, Jul 01 2009
STATUS
approved