This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A161858 Number of reduced words of length n in the Weyl group B_12. 22
 1, 12, 77, 352, 1286, 3992, 10933, 27092, 61841, 131768, 264759, 505660, 923858, 1623116, 2753972, 4528964, 7240871, 11284064, 17178942, 25599288, 37402222, 53660256, 75694775, 105110084, 143826980, 194114636, 258619428, 340389204 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Computed with MAGMA using commands similar to those used to compute A161409. REFERENCES J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial. N. Bourbaki, Groupes et algèbres de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.) LINKS G. C. Greubel, Table of n, a(n) for n = 0..144 FORMULA G.f. for B_m is the polynomial Product_{k=1..m} (1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084. MAPLE seq(coeff(series(mul((1-x^(2k))/(1-x), k=1..12), x, n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Oct 25 2018 MATHEMATICA CoefficientList[Series[Product[(1-x^(2*k)), {k, 1, 12}]/(1-x)^12, {x, 0, 50}], x] (* G. C. Greubel, Oct 25 2018 *) PROG (PARI) t='t+O('t^50); Vec(prod(k=1, 12, 1-t^(2*k))/(1-t)^12) \\ G. C. Greubel, Oct 25 2018 (MAGMA) m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[1-t^(2*k): k in [1..12]])/(1-t)^12)); // G. C. Greubel, Oct 25 2018 CROSSREFS The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175. Sequence in context: A161461 A162297 A162248 * A054334 A267174 A266766 Adjacent sequences:  A161855 A161856 A161857 * A161859 A161860 A161861 KEYWORD nonn AUTHOR John Cannon and N. J. A. Sloane, Nov 30 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 21 10:13 EDT 2019. Contains 321368 sequences. (Running on oeis4.)