%I #12 Jul 10 2020 03:50:22
%S 5,7,10,11,13,14,17,18,19,21,22,23,26,27,28,29,31,32,33,34,37,38,39,
%T 40,41,43,44,45,46,47,50,51,52,53,54,55,57,58,59,60,61,62,65,66,67,68,
%U 69,70,71,73,74,75,76,77,78,79,82,83,84,85,86,87,88,89,91,92,93,94,95,96,97,98
%N Complement of A006446.
%C The asymptotic density of this sequence is 1 (Cooper and Kennedy, 1989). - _Amiram Eldar_, Jul 10 2020
%H Curtis N. Cooper and Robert E. Kennedy, <a href="http://www.jstor.org/stable/2323194">Chebyshev's inequality and natural density</a>, Amer. Math. Monthly, Vol. 96, No. 2 (1989), pp. 118-124.
%H Omar E. Pol, <a href="http://www.polprimos.com">Determinacion geometrica de los numeros primos y perfectos</a>
%H Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polprdipi.jpg">Divisors and pi(x)</a>
%Y Cf. A000005, A018253, A161205, A161344, A161345, A161424, A006446, A161828, A161835.
%K nonn,easy
%O 1,1
%A _Omar E. Pol_, Jun 21 2009, Jun 28 2009, Feb 08 2010
%E More terms from _N. J. A. Sloane_, Feb 08 2010