login
A161798
G.f. satisfies: A(x) = 1/(1 - x/(1 - x*A(x))^3)^2.
5
1, 2, 9, 46, 262, 1590, 10081, 65986, 442518, 3024772, 20996141, 147603198, 1048747751, 7519252606, 54332565330, 395264527626, 2892666314150, 21281120904168, 157299607827727, 1167582500757800, 8699515577902203
OFFSET
0,2
LINKS
Vaclav Kotesovec, Recurrence
FORMULA
a(n) = Sum_{k=0..n} C(2*n-k+1,k)/(n-k+1) * C(n+2*k-1,n-k).
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n then
a(n,m) = Sum_{k=0..n} C(2*n-k+m,k)*m/(n-k+m) * C(n+2*k-1,n-k).
a(n) ~ c*d^n/(sqrt(Pi)*n^(3/2)), where d = 8.01957328653868383... is the root of the equation 3125 + 22356*d - 162432*d^2 - 361584*d^3 - 326592*d^4 + 46656*d^5 = 0 and c = 1.216730444416766043545857948227854793382399566... - Vaclav Kotesovec, Sep 18 2013
MATHEMATICA
Table[Sum[Binomial[2*n-k+1, k]/(n-k+1)*Binomial[n+2*k-1, n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 18 2013 *)
PROG
(PARI) {a(n, m=1)=sum(k=0, n, binomial(2*n-k+m, k)*m/(n-k+m)*binomial(n+2*k-1, n-k))}
CROSSREFS
Sequence in context: A020053 A114194 A218045 * A365855 A373312 A134091
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 19 2009
STATUS
approved