login
A161774
a(n) = n^(3n^3 + 2).
1
1, 67108864, 3990838394187339929534246675572349035227
OFFSET
1,2
COMMENTS
This provides an upper bound on the number of left-associated formulas in O'Connor's puzzle, size of the free Cartesian closed category over 3 objects.
a(n) too big to include in data sections for n>=4.
LINKS
Michael O'Connor, An Interesting Puzzle in Propositional Logic, April 9, 2009.
EXAMPLE
a(2) = 2^26; a(3) = 3^83; a(4) = 2^388.
MAPLE
seq(n^(3*n^3+2), n=1..4); # Muniru A Asiru, Oct 25 2018
MATHEMATICA
Table[n^(3*n^3 + 2), {n, 1, 9}] (* G. C. Greubel, Oct 24 2018 *)
PROG
(PARI) vector(9, n, n^(3*n^3 + 2)) \\ G. C. Greubel, Oct 24 2018
(Magma) [n^(3*n^3 + 2): n in [1..9]]; // G. C. Greubel, Oct 24 2018
(GAP) List([1..4], n->n^(3*n^3+2)); # Muniru A Asiru, Oct 25 2018
CROSSREFS
Sequence in context: A263392 A011576 A089081 * A203670 A353203 A183707
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Jun 18 2009
STATUS
approved