login
A161765
a(n) is the smallest multiple of {the number of 1's in the binary representation of n} that is >= n.
2
1, 2, 4, 4, 6, 6, 9, 8, 10, 10, 12, 12, 15, 15, 16, 16, 18, 18, 21, 20, 21, 24, 24, 24, 27, 27, 28, 30, 32, 32, 35, 32, 34, 34, 36, 36, 39, 39, 40, 40, 42, 42, 44, 45, 48, 48, 50, 48, 51, 51, 52, 54, 56, 56, 55, 57, 60, 60, 60, 60, 65, 65, 66, 64, 66, 66, 69, 68, 69, 72, 72, 72
OFFSET
1,2
LINKS
FORMULA
a(n) = A000120(n)*ceiling(n/A000120(n)). - Michel Marcus, Nov 11 2018
EXAMPLE
11 (decimal) in binary is 1011. There are three 1's. Because 12 is the smallest multiple of 3 that is >= 11, then a(11) = 12.
MAPLE
a := proc (n) local n2, s, j: n2 := convert(n, base, 2): s := add(n2[i], i = 1 .. nops(n2)): for j while j*s < n do end do: j*s end proc: seq(a(n), n = 1 .. 80); # Emeric Deutsch, Jun 24 2009
MATHEMATICA
Table[d=DigitCount[n, 2, 1]; d*Ceiling[n/d], {n, 80}] (* Harvey P. Dale, Aug 23 2013 *)
PROG
(PARI) a(n) = my(nb = hammingweight(n)); nb*ceil(n/nb); \\ Michel Marcus, Nov 11 2018
CROSSREFS
Sequence in context: A262504 A211514 A111457 * A232091 A364066 A164798
KEYWORD
base,nonn
AUTHOR
Leroy Quet, Jun 18 2009
EXTENSIONS
Extended by Emeric Deutsch, Jun 24 2009
STATUS
approved